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ROBUST JACKKNIFE RIDGE REGRESSION TO COMBAT
MULTICOLLINEARITY AND HIGH LEVERAGE POINTS IN
MULTIPLE LINEAR REGRESSIONS

Abstract. In this paper, we modified the ordinary jackknife ridge
regression (JRR) to be more resistant for high leverage points (outliers in X
direction). The procedure for modification is by combining the JRR with a high
breakdown point and high efficiency robust methods such as MM-estimator and
modified generalized M-estimator (GM2). Here, two methods are suggested, the
first one is JRR based on the MM-estimator (JRMM) and the second is JRR based
on the GM2-estimator (JRGM2). The biggest advantages of the proposed methods
are that they have less bias and higher efficiency than existing methods to
overcome the combined problem of multicollinearity and high leverage points.
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1. Introduction

Multicollinearity is a major problem in multiple regression, this issues
occurs when two or more regressors are highly correlated. There are many bad
consequences for the problem of multicollinearity, such as increased standard error
and decreased reliability of coefficients, and often the results are confusing and
give misleading conclusions [Grop (2003)]. Another important problem in
regression analysis is the existence of outliers. Rousseeuw and Leory (1987)
defined an outlier as an observation that seems inconsistent with the bulk of the
data. Hekimoglu and Erenoglu (2013) classified outliers into three categories
namely, outliers in the Y-direction (small outliers), gross errors in the Y-direction
(vertical outliers) and leverage points in the X-direction. Outliers also have
significant impacts in regression, such as causing model failure and misleading
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conclusions. Under Gaussian Markov assumptions, the Ordinary Least Squares
(OLS) estimation method is widely used in multiple linear regression because it has
excellent properties and simplifies the computation. However, in the presence of
multicollinearity and outliers, the OLS estimators become very unstable and may
have large variance [Rousseeuw and Leroy (2003)], which leads to poor
predictions.

To address this problem of multicollinearity, one alternative approach is
ridge regression (RR), which was introduced by Hoerl and Kenard (1970).
Although RR has optimal properties in the case of multicollinearity, its estimators
are significantly biased [see, Batah et al. (2008), Esra and Fikri (2012)]. Singh et al.
(1986) suggested an almost unbiased ridge estimator depending on the Jackknife
technique to reduce the biasness in RR estimators.

They showed that the Jackknife ridge estimator has smaller bias and lower
mean square error (MSE) than the classical RR under some conditions. However,
RR and the Jackknife techniques are not robust to outliers and leverage point. As a
remedial technique, many robust methods have been proposed [Huber (2003,
Maronna (2006)], such as the least median of squares, the M-estimator, the MM-
estimator and the generalized M (GM-estimator). Unfortunately, neither robust
methods nor the RR technique alone is sufficient to address the complicated
problem of multicollinearity and outliers [see, Habshah and Marina (2007)]. To
circumvent this combined problem, significant works have been done by
integrating RR with the robust method to get an estimator that is much less
influenced by multicollinearity and unusual data.

Askin and Montgomery (1980) suggested using weighted RR to remedy
this complicated problem. Habshah and Marina (2007) suggested a new robust
ridge regression by incorporating RR with the MM-estimator to remedy the
problem of multicollinearity in the present of outliers. Jadhav and Kashid (2011)
suggested using a Jackknife ridge M-estimator to overcome multicollinearity and
outliers in the Y direction. However most of the suggested methods do not focus on
the combined problem of multicollinearity and high leverage points (HLPs) when
the outliers lie in the X direction. In this article, we propose to integrate Jackknife
Ridge Regression (JRR) with two robust methods, namely the MM-estimator and
the GM2-estimator, to overcome the multicollinearity and HLPs and to obtain
estimators that are much less biased than robust RR estimators.

The paper is organized as follows: Section 2 presents the model and
briefly explains it for OLS method. Section 3 gives the structure and estimators of
generalized ridge regression. Section 4 gives the structure and estimators of
Jackknife ridge regression. Section 5 presents the procedure for GM2-estimator
and briefly explained some robust methods. The estimators, bias, and variance for
the suggested method are given in Section 6. Section 7 presents the simulation
study. The discussion is presented in Section 8. Finally, Section 9 gives some
concluding remakes.
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2. Models and Estimators
Consider the following standard multiple linear regression model:

y=Xp+u 0y
where it is assumed that y is an (n x 1) vector of the dependent variable, X is an
(n x p) and full rank matrix of regressor variables, g is a (p x 1) vector of an
unknown regression parameters and uisan (n x 1) vector of the error term with
elements are assumed to be independently and identically normally such that

E(u) =0 and the dispersion matrix E(uu’) = ¢*I . For the purpose of convenience,
it is assumed that all variables are standardized so that the design matrix XX
(" denotes transpose) is in correlation form. The OLS estimator, namely

ﬂALs =(XX)_1XS/ (2
has optimal  properties under Gaussian-Markov ~ assumptions.  Let
A =diag(4,,4,,---,4,) be the matrix of eigenvalues for XX and ¥ is a (pxp)

matrix of corresponding eigenvectors whose columns are normalized. According to
Singh et al. (1986), the equivalent formula for (1) with canonical form is

y=Za+u 3
where Z =Xy and a =y 3; hence, A=2'Z =yXXy. The OLS estimator for
o is given by

dLS :(Zz)ilzy:/\ilzy 4

since o = y)3, then BLS can be written as:
ﬁLs =yds )

The MSE for the OLS estimator is given by:
MSE (5) = MSE(&5) = o°A™ (6)

Hoerl and Kennard showed that a solution to the OLS does not always
exist and there is no unique solution when the matrix XX is ill-conditioned (not
invertible) due to the multicollinearity problem. In this situation the OLS
estimators tend to become very large and may have large variance.

3. Generalized Ridge Regression

In order to handle the difficulties of OLS, Hoerl and Kennard (1970)
proposed a biased estimation method called Generalized Ridge Regression (GRR)
as an alternative technique in the case of the existence of multicollinearity. This
suggested technique is based on adding some bias into the estimators to reduce
their variance. They showed that the quantity XX + K, where K is a positive
constant, unlike XX in (2), is always invertible, so there is always a unique
solution in GRR. Here, K =diag(k,k,,....K,), k; =0 ,i=12...,p, is called the

ridge or shrinkage parameter. The generalized ridge regression estimate is obtained
by minimizing the penalized sum of squares:
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n p
Z(Yi - X ) *+ kiZﬂjz (7)
i=1 j=1
In (7) we can see that GRR penalizes the size of the regression coefficients to be
more resistant to multicollinearity. When k; =k, =---=k, =k,k >0, k is fixed,
the solution of GRR, namely ordinary RR, is given by
Prw = (XX +K1,) XY ®

Several methods of identifying k have been proposed in the literature. The
most popular approach for choosing the optimal k was suggested by Horel and
Kennard (1970) as follows:

(9)

where 62 and & are obtained by using OLS.

If k is equal to zero, BLS and ﬁ’RR are equivalent. The shrinkage parameter k has

the impact of shrinking the estimates toward zero, which leads to the introduction
of bias but reduces the variance of the estimate [Horel and Kennard (1970)]. The
canonical form of the RR estimator in (8) is given by [see, Bastlevsky (1994),
Batah et al. (2008), Esra and Fikri (2012)]

A (k) = (A+KkI)ZY

=B'zYy
=(1-kBY) & (10)
where B = (A +kl,), and hence the RR coefficients can be formulated as:
IBRR =y agr(k) 11)

The bias, variance, and MSE of the RR estimator are given as follows:
Bias(d g (K)) =kB™a
Var (@ge (K)) =o?(1 —kB™)A™(1 —kB™)’ 12)
MSE (Ggs (k) =Var (dgg (k)) + [Bias(d g (k))1[Bias(cgs ()1
=o’(I -kBHA(1 =kB')+k’B'aaB™
where Var (@) =o’A"and @ = 4, -
4. Jackknife Ridge Regression (JRR)
The Jackknife technique was originally proposed by Quenouille (1956) as
a technique for reducing the bias of an estimator. Singh et al. (1986) suggested an

approach to circumvent the biasing in RR depending on the Jackknife technique,
formulated as:

Yoy = XenB+ u’ 13)
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where u”is an error term with the ith coordinate deleted such that u" =0 and
Cov[u™]=o?l,, and y_, and X, arethe vector y with its ith value deleted and

the matrix X with its ith row deleted respectively. The matrix X_j does not

necessarily have full column rank. Then, the RR estimator in the reduced model is
given as

Brrcy = (XX o +KL) XY (14)
The model in (14) is called ordinary Jackknife Ridge Regression (JRR).

The JRR solution is given by [see, Hinkley (1977), Singh et al. (1986) and, Gro3
(2003)]

ey =(Z(nZey +KDTZLY
Let Z; and Y; being the ith column vector of Z and the ith coordinate of y, then:
Array = (22 - 2]z, +k)HZY-zy,) (15)
we can simplified (12) as following

. . B'ze
Opr-iy = Frr — 1-h (16)

where €, = (y; —2/&) and h, = z/(Z'Z)™z,. Then, the pseudo values P; defined
as follows: [see, Grof (2003)]

P =nags —(N—Dape @7
from (16) and (17), we obtain,
= 1 . (n-1) _.u~ Zg
P== + B — 1 18
n“ Z R .2:1: @-h) 49

since the variance of (&rr — Qrr(_iy)is an increasing function of h,, then we can
define the pseudo values as

Q = dRR +n(- hi )(dRR - dRR(—i)) 18)
Hence, the corresponding JRR estimators, namely ¢ ., (K), are given by
. — 1 N _
a (k) =Q = EZQ. =apr +B 1zziei 19)

The simplified model for JRR can be written as
Axrr(K) = (I +kB™) dgrg (K)
=(1-k’B™?) & (20)
From (20) we can clearly see that the JRR estimators are obtained by shrinking the
least squares estimator ¢ by the amountk?B ™. The ﬁJRR is obtained by:

Prr =7 Qe (K) (21)
The bias, variance, and MSE for the JRR estimator are given as follows:
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Bias (& s (K)) = —k*B&
Var (&, (K)) =o*(1 —k*B?)A™(1 —k*B?)’ (22)
MSE (& jpr (k) =Var (& g (K)) +[Bias(a s (k)] [Bias(d jer (k)]
=o’(1 -k’BHA™(I -k*B™")' +k*B?ad'B™?
The confidence interval for g . is given by [see, Grop (2003)

P _ SL
Breyi +t(1_?1n_ p)\/§ ) (23)
where SL is a significant level and S is given by
1 9 - 5
= n(n _ p) ;(QI _ﬁJRR)(Qi _ﬂJRR) (24)

5. Robust Regression Estimators

In regression analysis, the existence of outliers in the data set is a serious
problem. This problem occurs when the distribution of the error term comes from a
heavy tail distribution, and when the location or the scale is contaminated by
outliers [see, Askin and Montgomery (1980)]. Outliers can have an affect in both X
and Y directions and can have a significant adverse impact on the regression
estimators. The classical methods are very sensitive to outliers because they rely on
the least square estimation. For instance, even one outlier can destroy the least
square estimation [see, Rousseeuw and Leroy (1987), Maronna (2006)]. The robust
regression technique is an alternative method when the normal assumptions are
unfulfilled by the given data. Several methods have been suggested to detect
outliers in the data.

Huber (2003) proposed the most popular general technique of robust
regression with a high breakdown point called the M-estimator. The M-estimator
technique is based on replacing the sum squares of residuals in the least squares
method by another robust function to cope with the problem of outliers. The
objective function of the M-estimator is given by

n n 4

mind () = miny p(S ) (25)

=1 O i=1 o
where & is an estimate of the unknown scale parameter and o is a function that
assigns the contribution of the individual residual in the objective function. Huber
(2003) showed that the M-estimator is robust for outliers in Y direction but not
robust to HLPs because it has an unbounded influence function. To circumvent the
shortcomings of the M-estimator, Yohai developed a special class of M-estimator,
namely the MM-estimator [see, Rousseeuw and Leroy (2003), Maronna (2006)].

The MM-estimator has good properties due to it combines high breakdown
point (0.5) and excellent efficiency (0.95 of OLS efficiency under the normal
assumptions). Another high breakdown robust method, the GM-estimator, was
originally proposed by Mallows [Hekimoglu and Erenoglu (2013)]. The GM-
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estimator aims to down weight outliers in both the X and Y coordinates to ensure
that HLPs get lower weights than small leverage points. Unfortunately, it is
breakdown point does not exceed the amount [1/(p+1)] and also it is robust only
with a small fraction of outliers [Hekimoglu and Erenoglu (2013)]. Multi-stage
GM-estimators were then introduced in an attempt to remedy this shortcomings.

The procedure of multi-stage GM-estimators is to perform an initial
estimation method that has good properties and also merge different techniques in
different stages to satisfy a desirable property of the GM-estimator. GM1 and GM6
are two of the most practical modified GM-estimators. However, both GM1 and
GM6 are not very successful in rectifying this problem. In this respect, Bagheri
(2011) suggested the GM2 as a modification for the GM-estimator to be more
efficient for outliers and high leverage points. The procedure for GM2 is
summarized as follows.

Step 1: Calculate the initial residuals r;,i =12,...,n from the S-estimator
and then find the scale of residuals 7 , as follows:
r=y,—-9,1=12..n

7 =1.4826(1+5/(n - p)) Median]r;|
Step 2: Find the diagonal weights matrix W, with elements w; given by:

2
. X(0.95,p+1) .
W. = Mmin l, —y|, |=1,2,...,n
' (1.4 RMD? H

where RMD is the robust mahalanobis distance based on the minimum
volume ellipsoid (MVE) [Rousseeuw and Leroy (1987)]

Step 3: Calculate the influence i function for standardized residuals and
then compute

A=diag y* ()
TxXW,
where " is the derivative of Huber's influence function.

Step 4: Finally, the GM2-estimator can be obtained by deriving a one-step
Newton Raphson as:

Bowo = Bo + (X AX) X Wy (=) (26)

ri
W, 7

The RMD based on MVE can improve the ability for GM-estimator to detect the
high leverage precisely.
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6. Robust Ridge Regression and Robust Jackknife Ridge Regression
6.1 Robust Ridge Regression (RRR)
Assume that Band o« are robust coefficients obtained by using M-

estimator, MM-estimator or any robust estimator, then the general form of robust
ridge regression (RRR) version based on these robust methods can be written as
follows:

Aprr(K) = (1 =k B_l)& (27)
The robust ridge regression coefficient is presented as
Brer =7 Arrr(K) (28)

The robust shrinking parameter k corresponding with these robust
coefficients can be calculated by using different approaches. For instance, by
employing the Hoerl and Kennard technique,

A pa—_z
k=—2""r 29
77 (29)
where _ _
52 - (Y=XB)'(y—Xp)
BB

The bias, variance, and MSE of the RRR estimator are given by

Bias (dges (k) = E[dger (k) —a] =k B™a
Var (@gep (K)) = E[(@rrr (k) — a)(@per (k) — )]
=(I-kBHQ(l -kB™) (30)
MSE (drgep (k) =Var (apeq (K)) + [Bias (drggg (k))1[Bias (argeq (k)1
=(1-kBHQ( -kB™") +k’B"aaB™
where Q is a finite covariance matrix of any robust component such as « .

6.2 Robust Jackknife Ridge Regression (RJRR)

The robust Jackknife estimator based on the robust estimation method is
given by [see, Batah et al. (2008), Jadhav and Kashid (2011) and Esra and Fikri
(2012)],

i (K) =[1 + k Blager
=[I +kB*][I -kB']a
=(I-k’B ) a
The RIRR coefficient is given as

Brirg = ¥ Arirr (K)
The bias is defined as follows:
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Bias(agyrg (K)) = E[dgspe (K)] -
=E[(I -k’B?)a]l-a

(1 -k?B)E[@] - 31)
=(I1-k*BHa-a
=—k’B?a

The variance of RJRR estimator is given by
Var (appr (K)) = E[(@rsrr (K) — E(Gryrr (KD (Crsrr (K) — E(Grsrr (K))]'
= E[@gprr (K) —a][@pipr (K) —a]
=(1-k’B?)Q(l -k*B?Y (32)

The MSE of RJRR estimator is given by
MSE (dee (K)) =Var (dggq (k) + [bias(@gypg ()] [bias (s (K)]'

=(1-k’B?)Q(l —-k’B*)' +k*B?aaB™ (33

7. Simulation Study

In this part, we discuss a simulation study to assess the performance of the
proposed methods (RIMM and RIGM2) in the case of the simultaneous presence
of the multicollinearity problem and HLPs in a data set. To generate simulated data
with a different degree of multicollinearity, we apply a simulation approach given
by Lawrence and Arthur (1990) and McDonald and Galarneau (1975). We consider
the multivariate linear regression model as:

Yi = Po + X+ PoXip + PiXis + & (34)
where ¢ is the error term distributed as N(0,o%1). The explanatory variables are
generated by

X = PV, + (10— p*) "2y, 1=12,---,n; j=12,and 3.
where Vv, ,V,,,V;;, and Vv, are independent standard normal pseudo random

numbers, and p = 3 is the number of explanatory variables. The explanatory
variables are standardized so that the design matrix X X is in the canonical form.

The character p° denotes the degree of collinearity between X; and X,

1/2
12y

for j #m. In addition, three different values of high collinearity are selected
corresponding to p =0.90,0.95 and 0.95, and four different sets of observations
are considered corresponding to n = 20, 30, 50 and 100.

The contamination is done by replacing a clean datum in the explanatory
variables with HLPs corresponding to various ratios of the HLP, namely 7 = 0.05,
0.10 and 0.15. Moreover, seven estimation methods are applied in this study,
namely:
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= Ordinary Least Squares (OLS)

= Ridge Regression (RR)

= Jackknife Ridge Regression (JRR)

= Robust Ridge Regression based on M-estimator (RRM)

= Robust Jackknife Ridge Regression based on M-estimator (RIM)

= Robust Jackknife Ridge Regression based on MM-estimator (RIMM)

= Robust Jackknife Ridge Regression based on GM2-estimator (RIGM2).

To compare the performance of the above estimation methods we used the
following criteria:

¢ Rote Mean Square Error (RMSE):
The RMSE is given as follows [see, Lawrence and Arthur (1990)]

RMSE (8, 3) = JE[(B - B) (B - B)'] (35)

RMSE (4,) = %Z(ﬁz,——ﬂj)z, j=12...p

here, R = 1500 is a replication of Monte Carlo simulation experiments, [}ij is the
ith estimate of the jth parameter in the ith replication, and i j=1,2,and 3, are
the true coefficients of the regression model chosenas g, =g, = g, =1

e Square Loss Function (Loss):
The Loss criteria is given as follows [see, Grof (2003)]

Loss(5, /) = (B~ B) (B~ B)
=5 - B (39)
where "
B, =E(p) =;2ﬁij ,j=12and 3

e Comparison of MSE
Comeparison of The MSE ratios of RIMM and RIGM2 over OLS, RR,
JRR, RRM, and RJRM estimators are computed for all possible combinations of
n,p and 7. If the ratio is less than one, the numerator is more efficient than the
denominator, while if the ratio is greater than one, the denominator is more
efficient than the numerator. If the ratio is exactly one, the numerator and
denominator have the same efficiency.
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8. Discussion

The simulation experiment is replicated 1500 times for all possible
combinations of n, p and t and the comparison criterias of MSE, RMSE, and Loss
are computed for all methods of this study. The results for the simulation study are
summarized in Tables 1 to 9. When the simulated data have multicollinearity and
HLPs we can clearly observe that the values of RMSE and Loss for OLS, RR, and
JRR are larger than the other robust estimator methods for all possible
combinations of n, p and .

The values of RMSE and Loss for RRM and RJRM are smaller than those
for the classical estimator (OLS, RR and RR) but they are less efficient than RIMM
and RIGM2 because RRM and RJRM depend on the M-estimator, which is known
to be less efficient with HLPs, while the MM-estimator and the GM2-estimator can
do well with HLPs. RIMM and RIGM2 are the best methods in the presence of
multicollinearity and HLPs. However, the performance of RIGM2 is better than
that of RIMM in all possible cases except in the case of a small sample size, not
very strong multicollinearity, and low and moderate HLP ratios (n = 20, p = .90
and t = 0.05 and 0.10).

From Figs. 1 and 2 we can see that the curve of RMSE increases with
increases in the degree of multicollinearity and also with increases in the ratio of
HLPs, whereas RMSE decreases with increases in the number of observations. The
estimators for RIGM2 are more reliable because they depend on RMD (MVE) for
detecting multiple HLPs, so it can correctly identify the HLPs and then
successfully down weight them. The comparison of ratios of MSE for the estimator
methods are exhibited in Tables 4 to 9 shows that:

= The efficiency of the RIMM and RIGM2 estimators increases compared to
the other estimators as the size of the sample increases (see Figs. 1and 2).

= The efficiency of the RIMM and RIGMZ2 estimators increases compared to
the other estimators as the degree of multicollinearity increases (see Fig. 1).

= The efficiency of the RIMM and RIGM2 estimators increases compared to
the other estimators as the ratio of HLPs increases (see Fig. 2).

In general, we can say that the RIGMZ2 is the best estimation method and is
more efficient than the others to overcome the multicolinearity problem in the
presence of HLPs.

Table 1: RMSE and Loss for estimation methods with t = 0.05 (ratio of HLPs)

n 20 30 50 100

P RMSE Loss RMSE Loss RMSE Loss RMSE Loss
oLs 0.3029 0.0171 0.2103 0.0159 0.1991 0.0162 0.1850  0.0164
RR 0.2155 0.0168 0.1707 0.0160 0.1682 0.0163 0.1661  0.0165
JRR 0.2537 0.0168 0.1850 0.0159 0.1796 0.0162 0.1737  0.0164
RRM 0.90 0.1815 0.0172 0.1280 0.0076 0.1265 0.0070 0.1453  0.0115
RIRM 0.2070 0.0171 0.1327 0.0072 0.1281 0.0067 0.1447  0.0111
RIMM 0.0835 0.0001 0.0522 0.0004 0.0420 0.0001 0.0310  0.0001
RIGM2 0.0964  0.0001 0.0524 0.0003 0.0406 0.0001 0.0281  0.0001
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OLS
RR
JRR
RRM
RJRM
RIMM
RJIJGM2

OoLS
RR
JRR
RRM
RIRM
RIMM
RIGM2

0.95

0.99

0.3902
0.2537
0.3141
0.1996
0.2440
0.1019
0.1313

0.7946
0.4520
0.6062
0.2988
0.4323
0.1788
0.2004

0.0174
0.0168
0.0169
0.0171
0.0170
0.0001
0.0001

0.0206
0.0173
0.0183
0.0173
0.0179
0.0001
0.0001

0.2513
0.1833
0.2089
0.1183
0.1294
0.0593
0.0557

0.4657
0.2677
0.3481
0.1433
0.1916
0.0844
0.0743

0.0159
0.0159
0.0159
0.0055
0.0053
0.0005
0.0004

0.0166
0.0161
0.0165
0.0052
0.0052
0.0006
0.0005

0.2313
0.1773
0.1978
0.1255
0.1307
0.0476
0.0426

0.4068
0.2418
0.3088
0.1289
0.1563
0.0614
0.0537

0.0161
0.0161
0.0161
0.0068
0.0065
0.0002
0.0002

0.0164
0.0161
0.0162
0.0054
0.0052
0.0003
0.0002

0.2067
0.1724
0.1864
0.1413
0.1426
0.0356
0.0269

0.3334
0.2190
0.2681
0.1410
0.1530
0.0413
0.0255

0.0163
0.0163
0.0163
0.0103
0.0100
0.0001
0.0001

0.0163
0.0162
0.0162
0.0093
0.0091
0.0001
0.0001

Table 2: RMSE and Loss for estimation methods with T = 0.10 (ratio of HLPs)

n 20 30 50 100
P RMSE Loss RMSE Loss RMSE Loss RMSE Loss
oLS 0.3990 00182 03011 00176 02532 00176 02107  0.0174
RR 0.2614 00179 02083 00175 01898 00176  0.1772  0.0174
JRR 0.3220 00180 02462 00176 02147 00176  0.1908  0.0174
RRM 090 02142 00177 01727 00175 01674 00178  0.1635  0.0175
RIRM 0.2662  0.0178  0.1896 00174 01745 00176  0.1650  0.0173
RIMM 0.1449 00039 01132 00031 00936  0.0028 00768  0.0026
RIGM2 0.1572  0.0037  0.0970 00030 00881  0.0025 0.0738  0.0026
ors 05315 00183 03908 00177 03157 00176 02469 oo l%
IRR 03237 00179 ~ 02450 00175 02117 00175 01891  oioo
RRM 095 04160 00183 03065 00177 02538 00176 02120 oS
RIRM 02386 00176 ~ 01790 00174  0.1695 00174 01635  ooo5
RIMM 03161 00177 02088 00173  0.830 00173 01676 oo
RIGM2 01691 00033 01257 00025 00995 00022 00779 oo
0.1782  0.0034 00917 00023 00821 00025  0.0666
oLS 11238 00236  0.8092  0.0197 06209 00184  0.4402  0.0176
RR 0.6242  0.0191 04431 00184 03417 00177 02669  0.0173
JRR 0.8486  0.0210  0.6040 00194 04607 00181 03416  0.0174
RRM 0.99 04058 00178  0.2415 00174 01937 00172 01708  0.0171
RIRM 0.6022 00185 03475 00179 02486 00172 01919  0.0171
RIMM 0.2873  0.0028 01939 00022 01368  0.0019 00935  0.0017
RIGM2 0.2560  0.0026  0.1047  0.0021 00869  0.0017 00610  0.0017
Table 3: RMSE and Loss for estimation methods with T = 0.15 (ratio of HLPs)
n 20 30 50 100
1Y RMSE Loss RMSE Loss RMSE Loss RMSE Loss
oLS 04772 00186 03400 00181 02837 00181 02337  0.0179
RR 0.2999 00183 02227 00180 02038 00180  0.872  0.0179
JRR 0.3802 00185 02713 00181 02365 00180  0.2065  0.0179
RRM 090 02395 00182 01758 00181 01714 00181  0.1663  0.0180
RIRM 03123 00184 01961 00180 01830 00180  0.1695  0.0179
RIMM 0.1968 00100 01427 00064 01282 00066  0.1189  0.0073
RIGM2 0.1935 00099 01234 00068  0.1200 00073  0.1143  0.0076
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oLs 0.6431 0.0190 0.4489 0.0183 0.3625 0.0183 0.2827 0.0179
RR 0.3801 0.0184 0.2679 0.0181 0.2351 0.0180 0.2049 0.0178
JRR 0.4998 0.0188 0.3454 0.0183 0.2888 0.0181 0.2379 0.0178
RRM 0.95 0.2879 0.0182 0.1870 0.0179 0.1774 0.0180 0.1673 0.0179
RJRM 0.3990 0.0185 0.2258 0.0180 0.2000 0.0180 0.1739 0.0178
RIMM 0.2240 0.0087 0.1561 0.0055 0.1342 0.0056 0.1191 0.0062
RIGM2 0.2017 0.0088 0.1172 0.0057 0.1121 0.0062 0.1056 0.0065
oLs 1.3739 0.0230 0.9464 0.0212 0.7352 0.0200 0.5313 0.0181
RR 0.7539 0.0197 0.5040 0.0194 0.4089 0.0185 0.3118 0.0178
JRR 1.0372 0.0217 0.7006 0.0207 0.5521 0.0192 0.4093 0.0179
RRM 0.99 0.5626 0.0201 0.2601 0.0181 0.2195 0.0180 0.1783 0.0177
RIRM 0.8331 0.0229 0.3865 0.0187 0.3007 0.0181 0.2076 0.0177
RIMM 0.3726 0.0084 0.2365 0.0049 0.1807 0.0050 0.1402 0.0055
RIGM2 0.2696 0.0082 0.1286 0.0050 0.1123 0.0054 0.0985 0.0056

9. Conclusions

In this study, we proposed new estimation methods called RIMM and
RIGM2, by integrating the JRR method with MM-estimator and GM2-estimator
respectively, to remedy the combined problem of multicollinearity and HLPs. In
order to examine the performance of the suggested methods, we compared them
with existing methods by using a variety of simulation data based on RMSE, Loss
and ratio of MSE.

The results indicate that the classical methods, RRM and RJM have bad
performance compared with proposed methods when the correlated data has HLPs.
So, we can say that the proposed methods are the best methods for solving
multicollinearity in the presence of HLPs and for producing estimates with lower
RMSE and less bias.

Table 4: Ratio of MSE of RIGM2 comparison with the other estimation
methods of the study when T = 0.05

RIMGM RIMGM RIMGM RIMGM RIMGM RIMGM

" P OLS RR JRR RRR RIJIRM RIMM

20 0.3182 0.4473 0.3799 0.5310 0.4656 1.1542
30 0.90 0.2492 0.3070 0.2833 0.4093 0.3949 1.0032
50 ) 0.2041 0.2416 0.2262 0.3213 0.3172 0.9675
100 0.1518 0.1691 0.1616 0.1933 0.1941 0.9068
20 0.3366 0.5176 0.4181 0.6579 0.5382 1.2881
30 0.95 0.2218 0.3041 0.2669 0.4712 0.4306 0.9405
50 ) 0.1843 0.2404 0.2155 0.3397 0.3261 0.8958
100 0.1302 0.1561 0.1443 0.1905 0.1887 0.7559
20 0.2523 0.4435 0.3306 0.6707 0.4637 1.1209
30 0.99 0.1595 0.2775 0.2134 0.5184 0.3877 0.8806
50 ) 0.1319 0.2220 0.1738 0.4163 0.3434 0.8744
100 0.0765 0.1164 0.0951 0.1807 0.1666 0.6165
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Table 5: Ratio of MSE of RIGM2 comparison with the other estimation
methods of the study when t=0.10

RIMGM RIMGM RIMGM RIMGM RIMGM RIMGM

n P OLS RR JRR RRR RIRM RIMM

20 0.3939 0.6013 0.4881 0.7338 0.5905 1.0846
30 0.3223 0.4659 0.3941 0.5620 0.5120 0.8574
50 090 (3478 0.4640 0.4102 05261 0.5048 0.9411
100 0.3501 0.4162 0.3866 0.4512 0.4469 0.9606
20 0.3354 0.5506 0.4285 0.7470 0.5640 1.0540
0 ggp 02347 0.3745 0.2993 05123 0.4394 0.7296
50 - 0.2600 03877 03235 0.4844 0.4485 0.8251
100 0.2699 0.3523 0.3130 0.4075 0.3975 0.8556
20 0.2278 04102 03017 0.6309 04252 0.8912
30 0.1294 0.2363 01734 0.4337 0.3014 0.5402
50 0.99 0.1399 0.2542 0.1885 0.4484 0.3494 0.6349
100 0.1386 0.2286 0.1786 0.3572 0.3179 0.6528

Table 6: Ratio of MSE of RIGM2 comparison with the other estimation
methods of the study when t = 0.15

RIMGM RIMGM RIMGM RIMGM RIMGM RIMGM

n p OLS RR JRR RRR RIJRM RIMM

20 0.4054 0.6451 0.5090 0.8078 0.6196 0.9833
30 0.3628 05541 0.4547 0.7016 0.6291 0.8647
50 090 04229 05889 0.5074 0.6999 0.6559 0.9358
100 0.4893 0.6107 05536 0.6877 0.6746 0.9614
20 0.3137 05307 0.4036 0.7007 05055 0.9005
% 0.2611 0.4375 0.3393 0.6266 05192 0.7507
0 0.95 0.3092 0.4766 0.3881 0.6318 0.5604 0.8352
100 0.3734 05152 0.4438 0.6312 0.6069 0.8862
20 0.1962 0.3576 0.2599 04792 0.3236 0.7235
30 0.1359 0.2551 0.1836 0.4944 0.3327 0.5436
50 099 01527 0.2746 0.2033 05115 03733 0.6214
100 0.1854 0.3159 0.2407 05525 0.4746 0.7027

Table 7: Ratio of MSE of RIMM comparison with the other estimation
methods of the study when T = 0.05

RIMM RIMM RIMM RIMM RIMM RIMM

n OLS RR JRR RRR RIJRM RIMGM

20 0.2757 0.3875 0.3292 0.4601 0.4034 0.8664
30 0.90 0.2484 0.3060 0.2824 0.4080 0.3936 0.9968
50 ) 0.2109 0.2497 0.2338 0.3320 0.3279 1.0336
100 0.1674 0.1864 0.1782 0.2132 0.2141 1.1027
20 0.2613 0.4018 0.3246 0.5107 0.4178 0.7763
30 0.95 0.2359 0.3233 0.2837 0.5010 0.4579 1.0633
50 ) 0.2057 0.2683 0.2405 0.3792 0.3640 1.1163
100 0.1722 0.2065 0.1909 0.2520 0.2496 1.3229
20 0.2250 0.3956 0.2950 0.5984 0.4137 0.8921
30 0.99 0.1811 0.3151 0.2423 0.5887 0.4403 1.1356
50 ) 0.1509 0.2538 0.1987 0.4761 0.3927 1.1436
100 0.1240 0.1888 0.1542 0.2932 0.2702 1.6222
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Table 8: Ratio of MSE of RIMM comparison with the other estimation
methods of the study when t = 0.15

RIMM RIMM RIMM RIMM RIMM RIMM

: p OLS RR JRR RRR RIJRM RIMGM

20 0.3631 0.5544 0.4500 0.6765 0.5444 0.9220
30 0.90 0.3759 0.5434 0.4597 0.6555 0.5971 1.1664
50 ) 0.3696 0.4930 0.4359 0.5590 0.5364 1.0626
100 0.3645 0.4333 0.4025 0.4697 0.4652 1.0411
20 0.3182 0.5224 0.4065 0.7088 0.5351 0.9488
30 0.95 0.3218 0.5133 0.4102 0.7023 0.6023 1.3707
50 ’ 0.3151 0.4699 0.3920 0.5872 0.5436 1.2120
100 0.3154 0.4118 0.3658 0.4763 0.4646 1.1688
20 0.2556 0.4603 0.3386 0.7079 0.4771 1.1221
30 0.99 0.2396 0.4375 0.3210 0.8029 0.5579 1.8513
50 ’ 0.2204 0.4004 0.2969 0.7062 0.5503 1.5750
100 0.2123 0.3501 0.2736 0.5472 0.4870 1.5318

Table 9: Ratio of MSE of RIMM comparison with the other estimation
methods of the study when t = 0.15

RIMM RIMM RIMM RIMM RIMM RIMM

: P OLS RR JRR RRR RIJRM RIMGM

20 0.4123 0.6561 0.5176 0.8216 0.6302 1.0170
30 0.90 0.4196 0.6408 0.5259 0.8114 0.7276 1.1565
50 ) 0.4519 0.6293 0.5422 0.7479 0.7008 1.0686
100 0.5090 0.6352 0.5758 0.7153 0.7017 1.0402
20 0.3483 0.5893 0.4482 0.7781 0.5614 1.1105
30 0.95 0.3478 0.5828 0.4520 0.8348 0.6916 1.3321
50 ) 0.3702 0.5706 0.4647 0.7564 0.6710 1.1973
100 0.4214 0.5814 0.5007 0.7122 0.6849 1.1284
20 0.2712 0.4943 0.3592 0.6623 0.4473 1.3822
30 0.99 0.2499 0.4693 0.3377 0.9095 0.6120 1.8394
50 ’ 0.2457 0.4418 0.3272 0.8231 0.6007 1.6092
100 0.2639 0.4496 0.3425 0.7863 0.6754 1.4231
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Figure 1. Degree of Multicollinearity against the RMSE for the robust
estimation methods
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Figure 2. Ratio of HLPs against the RMSE for the robust estimation methods
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