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ROBUST JACKKNIFE RIDGE REGRESSION TO COMBAT 

MULTICOLLINEARITY AND HIGH LEVERAGE POINTS IN 

MULTIPLE LINEAR REGRESSIONS 
 

 

 Abstract. In this paper, we modified the ordinary jackknife ridge 

regression (JRR) to be more resistant for high leverage points (outliers in X 

direction). The procedure for modification is by combining the JRR with a high 

breakdown point and high efficiency robust methods such as MM-estimator and 

modified generalized M-estimator (GM2). Here, two methods are suggested, the 

first one is JRR based on the MM-estimator (JRMM) and the second is JRR based 

on the GM2-estimator (JRGM2). The biggest advantages of the proposed methods 

are that they have less bias and higher efficiency than existing methods to 

overcome the combined problem of multicollinearity and high leverage points. 

Keywords: Multicollinearity, outliers, high leverage point, ridge 

regression, Jackknife ridge regression, MM-estimator, GM2-estimator. 

 

JEL Classification: 62J05; 62J07 

1. Introduction  

 Multicollinearity is a major problem in multiple regression, this issues 

occurs when two or more regressors are highly correlated. There are many bad 

consequences for the problem of multicollinearity, such as increased standard error 

and decreased reliability of coefficients, and often the results are confusing and 

give misleading conclusions [Groβ (2003)]. Another important problem in 

regression analysis is the existence of outliers. Rousseeuw and Leory (1987) 

defined an outlier as an observation that seems inconsistent with the bulk of the 

data. Hekimoglu and Erenoglu (2013) classified outliers into three categories 

namely, outliers in the Y-direction (small outliers), gross errors in the Y-direction 

(vertical outliers) and leverage points in the X-direction. Outliers also have 

significant impacts in regression, such as causing model failure and misleading 
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conclusions. Under Gaussian Markov assumptions, the Ordinary Least Squares 

(OLS) estimation method is widely used in multiple linear regression because it has 

excellent properties and simplifies the computation. However, in the presence of 

multicollinearity and outliers, the OLS estimators become very unstable and may 

have large variance [Rousseeuw and Leroy (2003)], which leads to poor 

predictions.  

 To address this problem of multicollinearity, one alternative approach is 

ridge regression (RR), which was introduced by Hoerl and Kenard (1970). 

Although RR has optimal properties in the case of multicollinearity, its estimators 

are significantly biased [see, Batah et al. (2008), Esra and Fikri (2012)]. Singh et al. 

(1986) suggested an almost unbiased ridge estimator depending on the Jackknife 

technique to reduce the biasness in RR estimators.  

 They showed that the Jackknife ridge estimator has smaller bias and lower 

mean square error (MSE) than the classical RR under some conditions. However, 

RR and the Jackknife techniques are not robust to outliers and leverage point. As a 

remedial technique, many robust methods have been proposed [Huber (2003, 

Maronna (2006)], such as the least median of squares, the M-estimator, the MM-

estimator and the generalized M (GM-estimator). Unfortunately, neither robust 

methods nor the RR technique alone is sufficient to address the complicated 

problem of multicollinearity and outliers [see, Habshah and Marina (2007)]. To 

circumvent this combined problem, significant works have been done by 

integrating RR with the robust method to get an estimator that is much less 

influenced by multicollinearity and unusual data. 

  Askin and Montgomery (1980) suggested using weighted RR to remedy 

this complicated problem. Habshah and Marina (2007) suggested a new robust 

ridge regression by incorporating RR with the MM-estimator to remedy the 

problem of multicollinearity in the present of outliers. Jadhav and Kashid (2011) 

suggested using a Jackknife ridge M-estimator to overcome multicollinearity and 

outliers in the Y direction. However most of the suggested methods do not focus on 

the combined problem of multicollinearity and high leverage points (HLPs) when 

the outliers lie in the X direction. In this article, we propose to integrate Jackknife 

Ridge Regression (JRR) with two robust methods, namely the MM-estimator and 

the GM2-estimator, to overcome the multicollinearity and HLPs and to obtain 

estimators that are much less biased than robust RR estimators. 

  The paper is organized as follows: Section 2 presents the model and 

briefly explains it for OLS method. Section 3 gives the structure and estimators of 

generalized ridge regression. Section 4 gives the structure and estimators of 

Jackknife ridge regression. Section 5 presents the procedure for GM2-estimator 

and briefly explained some robust methods. The estimators, bias, and variance for 

the suggested method are given in Section 6. Section 7 presents the simulation 

study. The discussion is presented in Section 8. Finally, Section 9 gives some 

concluding remakes. 

 

 



 

 

 

 

 

   

 Robust Jackknife Ridge Regression to Combat Multicollinearity and HLPs 

______________________________________________________________ 

307 

 

2. Models and Estimators 

Consider the following standard multiple linear regression model: 

)1(uXy    

where it is assumed that y is an (n × 1) vector of the dependent variable, X is an    

(n × p) and full rank matrix of regressor variables, β is a (p × 1) vector of an 

unknown regression parameters and  u is an  (n × 1)  vector of the error term with 

elements are assumed to be independently and identically normally such that 

0)( uE  and the dispersion matrix IuuE 2)(  . For the purpose of convenience, 

it is assumed that all variables are standardized so that the design matrix XX        

(  denotes transpose) is in correlation form. The OLS estimator, namely 

)2()(ˆ 1 yXXXLS
   

has optimal properties under Gaussian-Markov assumptions. Let 

),,,(diag 21 p   be the matrix of eigenvalues for XX   and   is a (p×p) 

matrix of corresponding eigenvectors whose columns are normalized. According to 

Singh et al. (1986), the equivalent formula for (1) with canonical form is  

)3(uZy    

where XZ   and   ; hence,  XXZZ  . The OLS estimator for 

  is given by 

)4()(ˆ 11 yZyZZZLS
   

since   , then LS̂  can be written as:  

)5(ˆˆ
LSLS    

The MSE for the OLS estimator is given by: 

)6()ˆ()ˆ( 12   LSLS MSEMSE  

 Hoerl and Kennard showed that a solution to the OLS does not always 

exist and there is no unique solution when the matrix XX   is ill-conditioned (not 

invertible) due to the multicollinearity problem. In this situation the OLS 

estimators tend to become very large and may have large variance. 

  

 3. Generalized Ridge Regression 

In order to handle the difficulties of OLS, Hoerl and Kennard (1970) 

proposed a biased estimation method called Generalized Ridge Regression (GRR) 

as an alternative technique in the case of the existence of multicollinearity. This 

suggested technique is based on adding some bias into the estimators to reduce 

their variance. They showed that the quantity KXX  , where K is a positive 

constant, unlike XX  in (2), is always invertible, so there is always a unique 

solution in GRR. Here, ,,...,2,1,0),,...,,(diag 21 pikkkkK ip   is called the 

ridge or shrinkage parameter. The generalized ridge regression estimate is obtained 

by minimizing the penalized sum of squares:  
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)7()(
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
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ji

n

i

ii kxy   

In (7) we can see that GRR penalizes the size of the regression coefficients to be 

more resistant to multicollinearity. When 0,21  kkkkk p , k is fixed, 

the solution of GRR, namely ordinary RR, is given by  

)8()(ˆ 1 yXIkXX nRR
   

 Several methods of identifying k have been proposed in the literature. The 

most popular approach for choosing the optimal k was suggested by Horel and 

Kennard (1970) as follows: 

)9(

ˆ

ˆ

1

2

2





p

i

i

HK

p
kk



  

where 
2̂ and ̂  are obtained by using OLS.  

If k is equal to zero, LS̂  and RR̂ are equivalent. The shrinkage parameter k has 

the impact of shrinking the estimates toward zero, which leads to the introduction 

of bias but reduces the variance of the estimate [Horel and Kennard (1970)].  The 

canonical form of the RR estimator in (8) is given by [see, Bastlevsky (1994), 

Batah et al. (2008), Esra and Fikri (2012)] 

)10(ˆ)(

)()(ˆ

1

1

1

















kBI

yZB

yZkIk pRR

 

where )( pkIB  , and hence the RR coefficients can be formulated as: 

)11()(ˆˆ kRRRR    

The bias, variance, and MSE of the RR estimator are given as follows: 

1121112

1112

1

ˆˆ)()(

]))(ˆ())][(ˆ([))(ˆ()(ˆ(

)12()()())(ˆ(

ˆ))(ˆ(















BBkkBIkBI

kBiaskBiaskVarkMSE

kBIkBIkVar

kBkBias

RRRRRRRR

RR

RR









 

where 
LSVar  ˆˆand)ˆ( 12   .  

 4. Jackknife Ridge Regression (JRR) 

The Jackknife technique was originally proposed by Quenouille (1956) as 

a technique for reducing the bias of an estimator. Singh et al. (1986) suggested an 

approach to circumvent the biasing in RR depending on the Jackknife technique, 

formulated as: 

)13(*

)()( uXy ii     
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where *u is an error term with  the ith coordinate deleted such that 0* u  and 

1
2* ][  nIuCov   and )( iy   and )( iX   are the vector  y with its ith value deleted and 

the matrix X with its ith row deleted respectively. The matrix )( iX  does not 

necessarily have full column rank. Then, the RR estimator in the reduced model is 

given as  

)14()(ˆ
)()(

1

)()()(, iipiiiRR yXkIXX 




  

 The model in (14) is called ordinary Jackknife Ridge Regression (JRR). 

The JRR solution is given by [see, Hinkley (1977), Singh et al. (1986) and, Groβ 

(2003)] 

)()(

1

)()()( )(ˆ
iiiiiRR yZkIZZ 




  

Let iz  and iy being the ith column vector of Z and the ith coordinate of y, then: 

)15()()(ˆ 1

)( iiiiiRR yzyZkIzzZZ    

we can simplified (12) as following 

)16(,
1

ˆˆ
1

)(

i

ii
RRiRR

h

ezB






   

where )ˆ( iii zye   and iii zZZzh 1)(  . Then, the pseudo values Pi defined 

as follows: [see, Groβ (2003)] 

)17(ˆ)1(ˆ
)( iRRRRi nnP    

from (16) and (17), we obtain, 

)18(
)1(

)1(
ˆ

1

1

1

1






 




n

i i

ii
RR

n

i

i
h

ez
B

n

n
P

n
P   

since the variance of )ˆˆ( )( iRRRR  is an increasing function of 
ih , then we can 

define the pseudo values  as 

)18()ˆˆ)(1(ˆ
)( iRRRRiRRi hnQ


   

Hence, the corresponding JRR estimators, namely )(ˆ kJRR , are given by  

)19(ˆ
1

)(ˆ 1  iiRRiJRR ezBQ
n

Qk   

The simplified model for JRR can be written as 

)20(ˆ)(

)(ˆ)()(ˆ

22

1












BkI

kkBIk RRJRR
 

From (20) we can clearly see that the JRR estimators are obtained by shrinking the 

least squares estimator ̂  by the amount
22 Bk . The JRR̂   is obtained by: 

)21()(ˆˆ kJRRJRR    

The bias, variance, and  MSE for the JRR estimator are given as follows: 
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224121122
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)22()()())(ˆ(

ˆ))(ˆ(
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






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BBkBkIBkI

kBiaskBiaskVarkMSE

BkIBkIkVar

BkkBias

JRRJRRJRRJRR

JRR

JRR









 

The confidence interval for 
JRR̂  is given by [see, Groβ (2003) 

)23(,).,
2

1(ˆ
)( Spn

SL
tiJRR   

where SL is a significant level and S is given by 

)24()ˆ()ˆ(
)(

1

1








n

i

JRRiJRRi QQ
pnn

S   

 

 5. Robust Regression Estimators 

 In regression analysis, the existence of outliers in the data set is a serious 

problem. This problem occurs when the distribution of the error term comes from a 

heavy tail distribution, and when the location or the scale is contaminated by 

outliers [see, Askin and Montgomery (1980)]. Outliers can have an affect in both X 

and Y directions and can have a significant adverse impact on the regression 

estimators. The classical methods are very sensitive to outliers because they rely on 

the least square estimation. For instance, even one outlier can destroy the least 

square estimation [see, Rousseeuw and Leroy (1987), Maronna (2006)]. The robust 

regression technique is an alternative method when the normal assumptions are 

unfulfilled by the given data. Several methods have been suggested to detect 

outliers in the data.  

 Huber (2003) proposed the most popular general technique of robust 

regression with a high breakdown point called the M-estimator. The M-estimator 

technique is based on replacing the sum squares of residuals in the least squares 

method by another robust function to cope with the problem of outliers. The 

objective function of the M-estimator is given by 

)25()
ˆ

ˆ
()

ˆ
(

11







n

i

ii
n

i

i xy
min

r
min







  

where ̂  is an estimate of the unknown scale parameter and  is a function that 

assigns the contribution of the individual residual in the objective function. Huber 

(2003) showed that the M-estimator is robust for outliers in Y direction but not 

robust to HLPs because it has an unbounded influence function. To circumvent the 

shortcomings of the M-estimator, Yohai developed a special class of M-estimator, 

namely the MM-estimator [see, Rousseeuw and Leroy (2003), Maronna (2006)].  

 The MM-estimator has good properties due to it combines high breakdown 

point (0.5) and excellent efficiency (0.95 of OLS efficiency under the normal 

assumptions). Another high breakdown robust method, the GM-estimator, was 

originally proposed by Mallows [Hekimoglu and Erenoglu (2013)]. The GM-
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estimator aims to down weight outliers in both the X and Y coordinates to ensure 

that HLPs get lower weights than small leverage points. Unfortunately, it is 

breakdown point does not exceed the amount [1/(p+1)] and also it is robust only 

with a small fraction of outliers [Hekimoglu and Erenoglu (2013)]. Multi-stage 

GM-estimators were then introduced in an attempt to remedy this shortcomings.  

 The procedure of multi-stage GM-estimators is to perform an initial 

estimation method that has good properties and also merge different techniques in 

different stages to satisfy a desirable property of the GM-estimator. GM1 and GM6 

are two of the most practical modified GM-estimators. However, both GM1 and 

GM6 are not very successful in rectifying this problem. In this respect, Bagheri 

(2011) suggested the GM2 as a modification for the GM-estimator to be more 

efficient for outliers and high leverage points. The procedure for GM2 is 

summarized as follows. 

   

Step 1: Calculate the initial residuals niri ,...,2,1,   from the S-estimator 

and then find the scale of residuals̂ , as follows: 

i

iii

rpn

niyyr

Median))/(51(4826.1ˆ

,...,2,1,ˆ






 

 

Step 2: Find the diagonal weights matrix W, with elements wi  given by: 

ni
χ

minw
2

2

)p(0.95
,...,2,1}],

RMD
{,1[

1,




i
 

where RMD is the robust mahalanobis distance based on the minimum 

volume ellipsoid (MVE) [Rousseeuw and Leroy (1987)]  

 

Step 3: Calculate the influence  function for standardized residuals and 

then compute  

)
ˆ

(diag
i

i

w

r
A


 


  

where 
 is the derivative of Huber's influence function. 

 

Step 4: Finally, the GM2-estimator can be obtained by deriving a one-step 

Newton Raphson as: 

)26(ˆ
ˆ

ˆˆ
02 


 )(( i

i

'1'

GM
w

r
WXX)AXβ   

The RMD based on MVE can improve the ability for GM-estimator to detect the 

high leverage precisely. 

 

 



 

 

 

 

 

 

Mohammed Alguraibawi, Habshah Midi, Sohel Rana 

_________________________________________________________________ 

312 

 

 6. Robust Ridge Regression and Robust Jackknife Ridge Regression 

 6.1 Robust Ridge Regression (RRR) 

 Assume that 
~

and ~   are robust coefficients obtained by using M-

estimator, MM-estimator or  any robust estimator,  then the general form of robust 

ridge regression (RRR) version based on these robust methods  can be written as 

follows:  

)27(~)()(ˆ 1   BkIkRRR
 

The robust ridge regression coefficient is presented as  

)28()(ˆˆ kRRRRRR    

 

 The robust shrinking parameter k corresponding with these robust 

coefficients can be calculated by using different approaches. For instance, by 

employing the Hoerl and Kennard technique, 

)29(~~

~
ˆ

2








p
k  

where 




 ~~

)
~

()
~

(~ 2






XyXy  

The bias, variance, and MSE of the RRR estimator are given by 

 

11211

11

1

)()(

]))(ˆ([))](ˆ([))(ˆ())(ˆ(

)30()()(

]))(ˆ)()(ˆ[())(ˆ(

])(ˆ[))(ˆ(

















BBkBkIBkI

kBiaskBiaskVarkMSE
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where   is a finite covariance matrix of any robust component such as ~ .  

 

 6.2 Robust Jackknife Ridge Regression (RJRR) 

The robust Jackknife estimator based on the robust estimation method is 

given by [see, Batah et al. (2008), Jadhav and Kashid (2011) and Esra and Fikri 

(2012)], 






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~][)(ˆ

22

11

.


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The RJRR coefficient is given as  

)(ˆˆ kRJRRRJRR    

The bias is defined as follows: 
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The variance of RJRR estimator is given by 
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The MSE of RJRR estimator is given by 

)33()()(

])(ˆ()][(ˆ([)(ˆ())(ˆ(
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 7. Simulation Study 

In this part, we discuss a simulation study to assess the performance of the 

proposed methods (RJMM and RJGM2) in the case of the simultaneous presence 

of the multicollinearity problem and HLPs in a data set. To generate simulated data 

with a different degree of multicollinearity, we apply a simulation approach given 

by Lawrence and Arthur (1990) and McDonald and Galarneau (1975). We consider 

the multivariate linear regression model as: 

 

)34(3322110 iiiii xxxy    

where   is the error term distributed as ),0( 2 IN  . The explanatory variables are 

generated by  

.3and,2,1;,,2,1,)1( 2/12

4  jnivvx ijiij   

where 321 ,, iii vvv , and 4iv  are independent standard normal pseudo random 

numbers,  and  p = 3 is the number of explanatory variables. The explanatory 

variables are standardized so that the design matrix XX   is in the canonical form. 

The character 
2  denotes the degree of collinearity between ijx  and imx  

for mj  . In addition, three different values of high collinearity are selected 

corresponding to 95.0and95.0,90.0 , and four different sets of observations 

are considered corresponding to n = 20, 30, 50 and 100.  

 The contamination is done by replacing a clean datum in the explanatory 

variables with HLPs corresponding to various ratios of the HLP, namely   0.05, 

0.10 and 0.15. Moreover, seven estimation methods are applied in this study, 

namely: 
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 Ordinary Least Squares (OLS) 

 Ridge Regression (RR) 

 Jackknife Ridge Regression (JRR) 

 Robust Ridge Regression based on M-estimator (RRM) 

 Robust Jackknife Ridge Regression based on M-estimator (RJM) 

 Robust Jackknife Ridge Regression based on MM-estimator (RJMM) 

 Robust Jackknife Ridge Regression based on GM2-estimator (RJGM2). 

 

 To compare the performance of the above estimation methods we used the 

following criteria:  

 

 Rote Mean Square Error (RMSE):  

 The RMSE is given as follows [see, Lawrence and Arthur (1990)] 

 

pj
R

E

R

i

jijj ,...,2,1,)ˆ(
1

)(RMSE

)35(])ˆ()ˆ[()ˆ,(RMSE

1

2 









 

   

here, R = 1500 is a replication of Monte Carlo simulation experiments, 
ij̂  is the  

ith estimate of the jth parameter in the ith replication, and 
j , j = 1, 2, and 3, are 

the true coefficients of the regression model chosen as 1321    

 

 Square Loss Function (Loss):  

The Loss criteria is given as follows [see, Groβ (2003)] 
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 Comparison of MSE       

 Comparison of The MSE ratios of RJMM and RJGM2 over OLS, RR, 

JRR, RRM, and RJRM estimators are computed for all possible combinations of 

,n  and  . If the ratio is less than one, the numerator is more efficient than the 

denominator, while if the ratio is greater than one, the denominator is more 

efficient than the numerator. If the ratio is exactly one, the numerator and 

denominator have the same efficiency. 

 

  



 

 

 

 

 

   

 Robust Jackknife Ridge Regression to Combat Multicollinearity and HLPs 

______________________________________________________________ 

315 

 

 8. Discussion  
  The simulation experiment is replicated 1500 times for all possible 

combinations of n, p and τ and the comparison criterias of MSE, RMSE, and Loss 

are computed for all methods of this study. The results for the simulation study are 

summarized in Tables 1 to 9. When the simulated data have multicollinearity and 

HLPs we can clearly observe that the values of RMSE and Loss for OLS, RR, and 

JRR are larger than the other robust estimator methods for all possible 

combinations of n, p and τ. 

  The values of RMSE and Loss for RRM and RJRM are smaller than those 

for the classical estimator (OLS, RR and RR) but they are less efficient than RJMM 

and RJGM2 because RRM and RJRM depend on the M-estimator, which is known 

to be less efficient with HLPs, while the MM-estimator and the GM2-estimator can 

do well with HLPs. RJMM and RJGM2 are the best methods in the presence of 

multicollinearity and HLPs. However, the performance of RJGM2 is better than 

that of RJMM in all possible cases except in the case of a small sample size, not 

very strong multicollinearity, and low and moderate HLP ratios (n = 20, ρ = .90 

and τ = 0.05 and 0.10).  

  From Figs. 1 and 2 we can see that the curve of RMSE increases with 

increases in the degree of multicollinearity and also with increases in the ratio of 

HLPs, whereas RMSE decreases with increases in the number of observations. The 

estimators for RJGM2 are more reliable because they depend on RMD (MVE) for 

detecting multiple HLPs, so it can correctly identify the HLPs and then 

successfully down weight them. The comparison of ratios of MSE for the estimator 

methods are exhibited in Tables 4 to 9 shows that: 

 The efficiency of the RJMM and RJGM2 estimators increases compared to 

the other estimators as the size of the sample increases (see Figs. 1and 2). 

  The efficiency of the RJMM and RJGM2 estimators increases compared to 

the other estimators as the degree of multicollinearity increases (see Fig. 1). 

  The efficiency of the RJMM and RJGM2 estimators increases compared to 

the other estimators as the ratio of HLPs increases (see Fig. 2). 

 In general, we can say that the RJGM2 is the best estimation method and is 

more efficient than the others to overcome the multicolinearity problem in the 

presence of HLPs. 

 

Table 1: RMSE and Loss for estimation methods with τ = 0.05 (ratio of HLPs) 
 n 20 30 50 100 

 RMSE Loss RMSE Loss RMSE Loss RMSE Loss 

OLS 

RR 

JRR 

RRM 

RJRM 

RJMM 

RJGM2  

 

 

 

0.90 

0.3029 

0.2155 
0.2537 

0.1815 

0.2070 

0.0835 

0.0964 

0.0171 

0.0168 
0.0168 

0.0172 

0.0171 

0.0001 

0.0001 

0.2103 

0.1707 
0.1850 

0.1280 

0.1327 

0.0522 

0.0524 

0.0159 

0.0160 
0.0159 

0.0076 

0.0072 

0.0004 

0.0003 

0.1991 

0.1682 
0.1796 

0.1265 

0.1281 

0.0420 

0.0406 

0.0162 

0.0163 
0.0162 

0.0070 

0.0067 

0.0001 

0.0001 

0.1850 

0.1661 
0.1737 

0.1453 

0.1447 

0.0310 

0.0281 

0.0164 

0.0165 
0.0164 

0.0115 

0.0111 

0.0001 

0.0001 
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OLS 

RR 

JRR 

RRM 

RJRM 

RJMM 

RJGM2 

 

 

 

0.95 

0.3902 

0.2537 

0.3141 
0.1996 

0.2440 

0.1019 
0.1313 

0.0174 

0.0168 

0.0169 
0.0171 

0.0170 

0.0001 
0.0001 

0.2513 

0.1833 

0.2089 
0.1183 

0.1294 

0.0593 
0.0557 

0.0159 

0.0159 

0.0159 
0.0055 

0.0053 

0.0005 
0.0004 

0.2313 

0.1773 

0.1978 
0.1255 

0.1307 

0.0476 
0.0426 

0.0161 

0.0161 

0.0161 
0.0068 

0.0065 

0.0002 
0.0002 

0.2067 

0.1724 

0.1864 
0.1413 

0.1426 

0.0356 
0.0269 

0.0163 

0.0163 

0.0163 
0.0103 

0.0100 

0.0001 
0.0001 

 

OLS 

RR 

JRR 

RRM 

RJRM 

RJMM 

RJGM2 

 

 

 

0.99 

 

 

 

0.7946 
0.4520 

0.6062 

0.2988 
0.4323 

0.1788 
0.2004 

0.0206 
0.0173 

0.0183 

0.0173 
0.0179 

0.0001 
0.0001 

0.4657 
0.2677 

0.3481 

0.1433 
0.1916 

0.0844 
0.0743 

0.0166 
0.0161 

0.0165 

0.0052 
0.0052 

0.0006 
0.0005 

0.4068 
0.2418 

0.3088 

0.1289 
0.1563 

0.0614 
0.0537 

0.0164 
0.0161 

0.0162 

0.0054 
0.0052 

0.0003 
0.0002 

0.3334 
0.2190 

0.2681 

0.1410 
0.1530 

0.0413 
0.0255 

0.0163 
0.0162 

0.0162 

0.0093 
0.0091 

0.0001 
0.0001 

 
Table 2: RMSE and Loss for estimation methods with τ = 0.10 (ratio of HLPs) 

  
n 20 30 50 100 

 RMSE Loss RMSE Loss RMSE Loss RMSE Loss 

OLS 

RR 

JRR 

RRM 

RJRM 

RJMM 

RJGM2  

 

 

 

0.90 

0.3990 
0.2614 

0.3220 

0.2142 
0.2662 

0.1449 

0.1572 

0.0182 
0.0179 

0.0180 

0.0177 
0.0178 

0.0039 

0.0037 

0.3011 
0.2083 

0.2462 

0.1727 
0.1896 

0.1132 

0.0970 

0.0176 
0.0175 

0.0176 

0.0175 
0.0174 

0.0031 

0.0030 

0.2532 
0.1898 

0.2147 

0.1674 
0.1745 

0.0936 

0.0881 

0.0176 
0.0176 

0.0176 

0.0178 
0.0176 

0.0028 

0.0025 

0.2107 
0.1772 

0.1908 

0.1635 
0.1650 

0.0768 

0.0738 

0.0174 
0.0174 

0.0174 

0.0175 
0.0173 

0.0026 

0.0026 

OLS 

RR 

JRR 

RRM 

RJRM 

RJMM 

RJGM2 

 

 

 

0.95 

0.5315 

0.3237 
0.4160 

0.2386 

0.3161 
0.1691 

0.1782 

0.0188 

0.0179 
0.0183 

0.0176 

0.0177 
0.0033 

0.0034 

0.3908 

0.2450 
0.3065 

0.1790 

0.2088 
0.1257 

0.0917 

0.0177 

0.0175 
0.0177 

0.0174 

0.0173 
0.0025 

0.0023 

0.3157 

0.2117 
0.2538 

0.1695 

0.1830 
0.0995 

0.0821 

0.0176 

0.0175 
0.0176 

0.0174 

0.0173 
0.0022 

0.0025 

0.2469 

0.1891 
0.2129 

0.1635 

0.1676 
0.0779 

0.0666 

0.0174 
0.0173 

0.0173 

0.0173 
0.0172 

0.0020 

0.0020 
 

OLS 

RR 

JRR 

RRM 

RJRM 

RJMM 

RJGM2 

 

 

 

0.99 

 

 

 

1.1238 

0.6242 
0.8486 

0.4058 

0.6022 
0.2873 

0.2560 

0.0236 

0.0191 
0.0210 

0.0178 

0.0185 
0.0028 

0.0026 

0.8092 

0.4431 
0.6040 

0.2415 

0.3475 
0.1939 

0.1047 

0.0197 

0.0184 
0.0194 

0.0174 

0.0179 
0.0022 

0.0021 

0.6209 

0.3417 
0.4607 

0.1937 

0.2486 
0.1368 

0.0869 

0.0184 

0.0177 
0.0181 

0.0172 

0.0172 
0.0019 

0.0017 

0.4402 

0.2669 
0.3416 

0.1708 

0.1919 
0.0935 

0.0610 

0.0176 

0.0173 
0.0174 

0.0171 

0.0171 
0.0017 

0.0017 

Table 3: RMSE and Loss for estimation methods with τ = 0.15 (ratio of HLPs) 

 
n 20 30 50 100 

 RMSE Loss RMSE Loss RMSE Loss RMSE Loss 

OLS 

RR 

JRR 

RRM 

RJRM 

RJMM 

RJGM2  

 

 

 

0.90 

0.4772 
0.2999 

0.3802 

0.2395 
0.3123 

0.1968 

0.1935 

0.0186 
0.0183 

0.0185 

0.0182 
0.0184 

0.0100 

0.0099 

0.3400 
0.2227 

0.2713 

0.1758 
0.1961 

0.1427 

0.1234 

0.0181 
0.0180 

0.0181 

0.0181 
0.0180 

0.0064 

0.0068 

0.2837 
0.2038 

0.2365 

0.1714 
0.1830 

0.1282 

0.1200 

0.0181 
0.0180 

0.0180 

0.0181 
0.0180 

0.0066 

0.0073 

0.2337 
0.1872 

0.2065 

0.1663 
0.1695 

0.1189 

0.1143 

0.0179 
0.0179 

0.0179 

0.0180 
0.0179 

0.0073 

0.0076 
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OLS 

RR 

JRR 

RRM 

RJRM 

RJMM 

RJGM2 

 

 

 

0.95 

0.6431 

0.3801 

0.4998 
0.2879 

0.3990 

0.2240 
0.2017 

0.0190 

0.0184 

0.0188 
0.0182 

0.0185 

0.0087 
0.0088 

0.4489 

0.2679 

0.3454 
0.1870 

0.2258 

0.1561 
0.1172 

0.0183 

0.0181 

0.0183 
0.0179 

0.0180 

0.0055 
0.0057 

0.3625 

0.2351 

0.2888 
0.1774 

0.2000 

0.1342 
0.1121 

0.0183 

0.0180 

0.0181 
0.0180 

0.0180 

0.0056 
0.0062 

0.2827 

0.2049 

0.2379 
0.1673 

0.1739 

0.1191 
0.1056 

0.0179 

0.0178 

0.0178 
0.0179 

0.0178 

0.0062 
0.0065 

 

OLS 

RR 

JRR 

RRM 

RJRM 

RJMM 

RJGM2 

 

 

 

0.99 

 

 

 

1.3739 
0.7539 

1.0372 

0.5626 
0.8331 

0.3726 

0.2696 

0.0230 
0.0197 

0.0217 

0.0201 
0.0229 

0.0084 

0.0082 

0.9464 
0.5040 

0.7006 

0.2601 
0.3865 

0.2365 

0.1286 

0.0212 
0.0194 

0.0207 

0.0181 
0.0187 

0.0049 

0.0050 

0.7352 
0.4089 

0.5521 

0.2195 
0.3007 

0.1807 

0.1123 

0.0200 
0.0185 

0.0192 

0.0180 
0.0181 

0.0050 

0.0054 

0.5313 
0.3118 

0.4093 

0.1783 
0.2076 

0.1402 

0.0985 

0.0181 
0.0178 

0.0179 

0.0177 
0.0177 

0.0055 

0.0056 

 

 9. Conclusions 

 In this study, we proposed new estimation methods called RJMM and 

RJGM2, by integrating the JRR method with MM-estimator and GM2-estimator 

respectively, to remedy the combined problem of multicollinearity and HLPs. In 

order to examine the performance of the suggested methods, we compared them 

with existing methods by using a variety of simulation data based on RMSE, Loss 

and ratio of MSE.  

 The results indicate that the classical methods, RRM and RJM have bad 

performance compared with proposed methods when the correlated data has HLPs. 

So, we can say that the proposed methods are the best methods for solving 

multicollinearity in the presence of HLPs and for producing estimates with lower 

RMSE and less bias. 

 

Table 4: Ratio of MSE of RJGM2 comparison with the other estimation 

methods of the study when τ = 0.05 

n  OLS

RJMGM 

RR

RJMGM 

JRR

RJMGM 

RRR

RJMGM 

RJRM

RJMGM 

RJMM

RJMGM 

20 

30 

50 

100 

0.90 

0.3182 

0.2492 

0.2041 
0.1518 

0.4473 

0.3070 

0.2416 
0.1691 

0.3799 

0.2833 

0.2262 
0.1616 

0.5310 

0.4093 

0.3213 
0.1933 

0.4656 

0.3949 

0.3172 
0.1941 

1.1542 

1.0032 

0.9675 
0.9068 

20 

30 

50 

100 

0.95 

0.3366 

0.2218 

0.1843 
0.1302 

0.5176 

0.3041 

0.2404 
0.1561 

0.4181 

0.2669 

0.2155 
0.1443 

0.6579 

0.4712 

0.3397 
0.1905 

0.5382 

0.4306 

0.3261 
0.1887 

1.2881 

0.9405 

0.8958 
0.7559 

20 

30 

50 

100 

0.99 

0.2523 

0.1595 
0.1319 

0.0765 

0.4435 

0.2775 
0.2220 

0.1164 

0.3306 

0.2134 
0.1738 

0.0951 

0.6707 

0.5184 
0.4163 

0.1807 

0.4637 

0.3877 
0.3434 

0.1666 

1.1209 

0.8806 
0.8744 

0.6165 
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Table 5: Ratio of MSE of RJGM2 comparison with the other estimation 

methods of the study when τ = 0.10 

n   OLS

RJMGM  

RR

RJMGM  

JRR

RJMGM  

RRR

RJMGM  

RJRM

RJMGM 

RJMM

RJMGM 

20 

30 

50 

100 

0.90 

0.3939 

0.3223 

0.3478 
0.3501 

0.6013 

0.4659 

0.4640 
0.4162 

0.4881 

0.3941 

0.4102 
0.3866 

0.7338 

0.5620 

0.5261 
0.4512 

0.5905 

0.5120 

0.5048 
0.4469 

1.0846 

0.8574 

0.9411 
0.9606 

20 

30 

50 

100 

0.95 

0.3354 
0.2347 

0.2600 

0.2699 

0.5506 
0.3745 

0.3877 

0.3523 

0.4285 
0.2993 

0.3235 

0.3130 

0.7470 
0.5123 

0.4844 

0.4075 

0.5640 
0.4394 

0.4485 

0.3975 

1.0540 
0.7296 

0.8251 

0.8556 

20 

30 

50 

100 

0.99 

0.2278 

0.1294 

0.1399 
0.1386 

0.4102 

0.2363 

0.2542 
0.2286 

0.3017 

0.1734 

0.1885 
0.1786 

0.6309 

0.4337 

0.4484 
0.3572 

0.4252 

0.3014 

0.3494 
0.3179 

0.8912 

0.5402 

0.6349 
0.6528 

 

Table 6: Ratio of MSE of RJGM2 comparison with the other estimation 

methods of the study when τ = 0.15 

n  OLS

RJMGM 

RR

RJMGM 

JRR

RJMGM 

RRR

RJMGM 

RJRM

RJMGM 

RJMM

RJMGM 

20 

30 

50 

100 

0.90 

0.4054 

0.3628 
0.4229 

0.4893 

0.6451 

0.5541 
0.5889 

0.6107 

0.5090 

0.4547 
0.5074 

0.5536 

0.8078 

0.7016 
0.6999 

0.6877 

0.6196 

0.6291 
0.6559 

0.6746 

0.9833 

0.8647 
0.9358 

0.9614 

20 

30 

50 

100 

0.95 

0.3137 
0.2611 

0.3092 

0.3734 

0.5307 
0.4375 

0.4766 

0.5152 

0.4036 
0.3393 

0.3881 

0.4438 

0.7007 
0.6266 

0.6318 

0.6312 

0.5055 
0.5192 

0.5604 

0.6069 

0.9005 
0.7507 

0.8352 

0.8862 

20 

30 

50 

100 

0.99 

0.1962 

0.1359 

0.1527 

0.1854 

0.3576 

0.2551 

0.2746 

0.3159 

0.2599 

0.1836 

0.2033 

0.2407 

0.4792 

0.4944 

0.5115 

0.5525 

0.3236 

0.3327 

0.3733 

0.4746 

0.7235 

0.5436 

0.6214 

0.7027 

Table 7: Ratio of MSE of RJMM comparison with the other estimation 

methods of the study when τ = 0.05 

n  OLS

RJMM 

RR

RJMM 

JRR

RJMM 

RRR

RJMM 

RJRM

RJMM 

RJMGM

RJMM 

20 

30 

50 

100 

0.90 

0.2757 

0.2484 

0.2109 
0.1674 

0.3875 

0.3060 

0.2497 
0.1864 

0.3292 

0.2824 

0.2338 
0.1782 

0.4601 

0.4080 

0.3320 
0.2132 

0.4034 

0.3936 

0.3279 
0.2141 

0.8664 

0.9968 

1.0336 
1.1027 

20 

30 

50 

100 

0.95 

0.2613 

0.2359 
0.2057 

0.1722 

0.4018 

0.3233 
0.2683 

0.2065 

0.3246 

0.2837 
0.2405 

0.1909 

0.5107 

0.5010 
0.3792 

0.2520 

0.4178 

0.4579 
0.3640 

0.2496 

0.7763 

1.0633 
1.1163 

1.3229 

20 

30 

50 

100 

0.99 

0.2250 

0.1811 
0.1509 

0.1240 

0.3956 

0.3151 
0.2538 

0.1888 

0.2950 

0.2423 
0.1987 

0.1542 

0.5984 

0.5887 
0.4761 

0.2932 

0.4137 

0.4403 
0.3927 

0.2702 

0.8921 

1.1356 
1.1436 

1.6222 

 

 

 



 

 

 

 

 

   

 Robust Jackknife Ridge Regression to Combat Multicollinearity and HLPs 

______________________________________________________________ 

319 

 

Table 8: Ratio of MSE of RJMM comparison with the other estimation 

methods of the study when τ = 0.15 

n  OLS

RJMM 

RR

RJMM 

JRR

RJMM 

RRR

RJMM 

RJRM

RJMM 

RJMGM

RJMM 

20 

30 

50 

100 

0.90 

0.3631 

0.3759 

0.3696 
0.3645 

0.5544 

0.5434 

0.4930 
0.4333 

0.4500 

0.4597 

0.4359 
0.4025 

0.6765 

0.6555 

0.5590 
0.4697 

0.5444 

0.5971 

0.5364 
0.4652 

0.9220 

1.1664 

1.0626 
1.0411 

20 

30 

50 

100 

0.95 

0.3182 

0.3218 
0.3151 

0.3154 

0.5224 

0.5133 
0.4699 

0.4118 

0.4065 

0.4102 
0.3920 

0.3658 

0.7088 

0.7023 
0.5872 

0.4763 

0.5351 

0.6023 
0.5436 

0.4646 

0.9488 

1.3707 
1.2120 

1.1688 

20 

30 

50 

100 

0.99 

0.2556 

0.2396 

0.2204 

0.2123 

0.4603 

0.4375 

0.4004 

0.3501 

0.3386 

0.3210 

0.2969 

0.2736 

0.7079 

0.8029 

0.7062 

0.5472 

0.4771 

0.5579 

0.5503 

0.4870 

1.1221 

1.8513 

1.5750 

1.5318 

  

Table 9: Ratio of MSE of RJMM comparison with the other estimation 

methods of the study when τ = 0.15 

n  OLS

RJMM 

RR

RJMM 

JRR

RJMM 

RRR

RJMM 

RJRM

RJMM 

RJMGM

RJMM 

20 

30 

50 

100 

0.90 

0.4123 

0.4196 

0.4519 
0.5090 

0.6561 

0.6408 

0.6293 
0.6352 

0.5176 

0.5259 

0.5422 
0.5758 

0.8216 

0.8114 

0.7479 
0.7153 

0.6302 

0.7276 

0.7008 
0.7017 

1.0170 

1.1565 

1.0686 
1.0402 

20 

30 

50 

100 

0.95 

0.3483 

0.3478 
0.3702 

0.4214 

0.5893 

0.5828 
0.5706 

0.5814 

0.4482 

0.4520 
0.4647 

0.5007 

0.7781 

0.8348 
0.7564 

0.7122 

0.5614 

0.6916 
0.6710 

0.6849 

1.1105 

1.3321 
1.1973 

1.1284 

20 

30 

50 

100 

0.99 

0.2712 
0.2499 

0.2457 

0.2639 

0.4943 
0.4693 

0.4418 

0.4496 

0.3592 
0.3377 

0.3272 

0.3425 

0.6623 
0.9095 

0.8231 

0.7863 

0.4473 
0.6120 

0.6007 

0.6754 

1.3822 
1.8394 

1.6092 

1.4231 
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Figure 1. Degree of Multicollinearity against the RMSE for the robust 

estimation methods 
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Figure 2. Ratio of HLPs against the RMSE for the robust estimation methods 
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